The semi-endoparastic reniform nematode (Rotylenchulus reniformis) infects over 300 plant species. Females penetrate host roots and induce formation of complex, multinucleate feeding sites called syncytia.
Redding NW, Agudelo P, Wells CE. Phytopathology. 2017 Sep 15. doi: 10.1094/PHYTO-04-17-0154-R. [Epub ahead of print] Abstract The semi-endoparastic reniform nematode (Rotylenchulus reniformis) infects over 300 plant species. Females penetrate host roots and induce formation of complex, multinucleate feeding sites called syncytia. While anatomical changes associated with reniform nematode infection are well documented, little is known about their molecular basis. We grew soybean (Glycine max) in a split-root growth system, inoculated half of each root system with R. reniformis, and quantified gene expression in infected and control root tissue at four dates after inoculation. Over 6,000 genes were differentially expressed between inoculated and control roots on at least one date (FDR = 0.01, |log2FC| ≥ 1), and 507 gene sets were significantly enriched or depleted in inoculated roots (FDR = 0.05). Numerous genes up-regulated during syncytium formation had previously been associated with rhizobia nodulation. These included the nodule-initiating transcription factors CYCLOPS, NSP1, NSP2, and NIN, as well as multiple nodulins associated with the plant-derived peribacteroid membrane. Nodulation-related NIP aquaporins and SWEET sugar transporters were induced, as were plant CLAVATA3/ESR-related (CLE) signaling proteins and cell cycle regulators such as CCS52A and E2F. Nodulins and nodule-associated genes may have ancestral functions in normal root development and mycorrhization that have been co-opted by both parasitic nematodes and rhizobial bacteria to promote feeding site and nodule formation. See https://www.ncbi.nlm.nih.gov/pubmed/28945515