The multiple synthetic derivatives platform described in this study will provide an opportunity for effective utilization of Aegilops tauschii traits and genes for wheat breeding.

 

Abstract

 

Introducing genes from wild relatives is the best option to increase genetic diversity and discover new alleles necessary for wheat improvement. A population harboring genomic fragments from the diploid wheat progenitor Aegilops tauschii Coss. in the background of bread wheat (Triticum aestivum L.) was developed by crossing and backcrossing 43 synthetic wheat lines with the common wheat cultivar Norin 61. We named this population multiple synthetic derivatives (MSD). To validate the suitability of this population for wheat breeding and genetic studies, we randomly selected 400 MSD lines and genotyped them by using Diversity Array Technology sequencing markers. We scored black glume as a qualitative trait and heading time in two environments in Sudan as a quantitative trait. Our results showed high genetic diversity and less recombination which is expected from the nature of the population. Genome-wide association (GWA) analysis showed one QTL at the short arm of chromosome 1D different from those alleles reported previously indicating that black glume in the MSD population is controlled by new allele at the same locus. For heading time, from the two environments, GWA analysis revealed three QTLs on the short arms of chromosomes 2A, 2B and 2D and two on the long arms of chromosomes 5A and 5D. Using the MSD population, which represents the diversity of 43 Ae. tauschii accessions representing most of its natural habitat, QTLs or genes and desired phenotypes (such as drought, heat and salinity tolerance) could be identified and selected for utilization in wheat breeding.

 

See: https://link.springer.com/article/10.1007/s00122-018-3102-x

 

 

 

Figure 1:  DArTseq genotyping of primary synthetic (PS) wheat lines. Graphical genotyping shows 6794 SNP markers evaluated for 47 PS lines, ‘Langdon’ as a reference for the A and B genomes and ‘Norin 61’ as a reference for the D genome. Each column indicates the genotype of each PS line. Chromosomes are separated by horizontal lines. REF: reference sequence; missing: missing genotype