Cellulose is the most abundant biopolymer on Earth and is a critical component for plants to grow and develop. Cellulose is synthesized by large cellulose synthase complexes containing multiple cellulose synthase A (CESA) subunits; however, how cellulose synthesis is regulated remains unclear.

Clara Sánchez-Rodríguez, KassaDee Ketelaar, Rene Schneider, Jose A. Villalobos, Chris R. Somerville, Staffan Persson, and Ian S. Wallace

 

Significance

 

Cellulose is the most abundant biopolymer on Earth and is a critical component for plants to grow and develop. Cellulose is synthesized by large cellulose synthase complexes containing multiple cellulose synthase A (CESA) subunits; however, how cellulose synthesis is regulated remains unclear. In this study, we identify BRASSINOSTEROID INSENSITIVE2 (BIN2) as a protein kinase that directly phosphorylates Arabidopsis CESA1 and further demonstrate that this phosphorylation event negatively regulates CESA activity, and thus cellulose biosynthesis, in Arabidopsis. Therefore, this study provides a clear link between cell wall biosynthesis and hormonal signal transduction pathways that regulate plant growth and development.

 

Abstract

 

The deposition of cellulose is a defining aspect of plant growth and development, but regulation of this process is poorly understood. Here, we demonstrate that the protein kinase BRASSINOSTEROID INSENSITIVE2 (BIN2), a key negative regulator of brassinosteroid (BR) signaling, can phosphorylate Arabidopsis cellulose synthase A1 (CESA1), a subunit of the primary cell wall cellulose synthase complex, and thereby negatively regulate cellulose biosynthesis. Accordingly, point mutations of the BIN2-mediated CESA1 phosphorylation site abolished BIN2-dependent regulation of cellulose synthase activity. Hence, we have uncovered a mechanism for how BR signaling can modulate cellulose synthesis in plants.

 

See: https://www.google.com.vn/?gfe_rd=cr&ei=2WXbWOPgMsOP2ATBmKGIBw

PNAS March 28 2017; vol.114; no.13: 3533–3538