Transgenic Bt-rice is rice that has been genetically modified to produce insecticidal proteins (Cry1Ab/Ac) within the plant.

Rice straw is incorporated into paddy soils after harvest for fertilization or to improve the soil structure. The incorporation of straw from transgenic Bt-rice may pose risks to the paddy soil system. The decomposition of Bt-rice straw and degradation of Cry1Ab/Ac proteins from the straw were investigated under laboratory conditions. In addition, effects of the incorporation with chopped rice straw on microbial communities in differently textured paddy soils were studied. The results indicated that the incorporation of straw from transgenic Bt-rice might have a slight influence on soil respiration and CH4 emissions in two paddy soils, i.e. the Silt Loam soil and the Silty Clay soil. Differences were also observed in the cumulative emissions of CO2 between the two amended paddy soils in addition to the well-known increase in emissions of both CO2and CH4 due to straw incorporation. The Cry1Ab/Ac proteins from straw of transgenic Bt-rice were degraded in paddy soils. The rate of decline in the concentration of Cry1Ab/Ac proteins was different in the two soils. After 29 d of incubation, 61% and 42% of initial Cry1Ab/Ac proteins were detected in the silt loam and silty clay, respectively. As a result of the presence of the rice straw, the abundance of bacteria, archaea, and total cells were increased in two soils. The numbers of bacteria and total cells were 6.4% and 11.5% higher in the silt loam amended with straw of Bt-rice than non-Bt-rice, respectively. The silty clay displayed a similar trend as the silt loam.