Rice quality is mainly related to the following two starch components, apparent amylose content (AAC) and resistant starch (RS).

The former affects grain cooking properties, while RS acts as a prebiotic. In the present study, a Genome Wide Association Scan (GWAS) was performed using 115 rice japonica accessions, including tropical and temperate genotypes, with the purpose of expanding the knowledge of the genetic bases affecting RS and AAC. High phenotypic variation was recorded for the two traits, which positively correlated. Moreover, both the parameters correlated with seed length (positive correlation) and seed width (negative correlation). A correlational selection according to human preferences has been hypothesized for the two starch traits and grain size. In addition, human selection has been proposed as the causal agent even for the different phenotypes related to starch and grain size showed by the tropical and temperate japonica accessions utilized in this study. The present GWAS led to the identification of 11 associations for RS on seven chromosomes and five associations for AAC on chromosome 6. Candidate genes and co-positional relationships with quantitative trait loci (QTLs) previously identified as affecting RS and AAC were identified for 6 associations. The candidate genes and the new RS- and/or AAC-associated regions detected provide valuable sources for future functional characterizations and for breeding programs aimed at improving rice grain quality.

 

See https://www.mdpi.com/2223-7747/8/8/292

 

 

Figure 5. Manhattan plots and Q-Q plots of the significant associations detected for resistant starch (RS; (A,B)) and apparent amylose content (AAC; (C,D)).