QTLs for insect resistance parameters, trichome type IV development, and more than 200 non-volatile metabolites, including 76 acyl sugars, all co-locate at the end of Chromosome 2 of Solanum galapagense.



Host plant resistance is gaining importance as more and more insecticides are being banned due to environmental concerns. In tomato, resistance towards insects is found in wild relatives and has been attributed to the presence of glandular trichomes and their specific phytochemical composition. In this paper, we describe the results from a large-scale QTL mapping of data from whitefly resistance tests, trichome phenotyping and a comprehensive metabolomics analysis in a recombinant inbred line population derived from a cross between the cultivated Solanum lycopersicum and the wild relative S. galapagense, which is resistant to a range of pest insects. One major QTL (Wf-1) was found to govern the resistance against two different whitefly species. This QTL co-localizes with QTLs for the presence of trichomes type IV and V, as well as all 76 acyl sugars detected and about 150 other non-volatile phytochemicals, including methyl esters of the flavonols myricetin and quercetin. Based on these results, we hypothesize that Wf-1 is regulating the formation of glandular trichome type IV on the leaf epidermis, enabling the production and accumulation of bioactive metabolites in this type of trichomes.


See https://link.springer.com/article/10.1007/s00122-018-3239-7