The rice blast is a typical fungal disease caused by Magnaporthe oryzae, and the mitochondrial ATP-dependent Lon protease (MAP1) has been proven to be involved in blast development.

We previously screened a C3HC type Zinc-finger domain protein (ZFC3), which is interacted with MAP1. The purpose of this research was to study the biological function of ZFC3 protein in M. oryzae.


We first confirmed that the ZFC3-RFP fusion protein is localized within the mitochondria. The deleted mutant strains of ZFC3 (∆ZFC3) showed the enhanced expression level of mtATP6, particularly mtATP8, and almost unchanged nATP9. ΔZFC3 produces more conidia and more tolerance to multiple stressors. The knock-out strain shows more melanin accumulation suggests the susceptibility to aging. ΔZFC3 displays faster early-stage hypha infiltration involved in MAP1-mediated pathogenicity in host rice.


These results support the view that ZFC3 is a key regulator involved in gene regulation, stress response, cell wall integrity, longevity, conidiation, infection hypha development and MAP1-mediated pathogenicity in M. oryzae.





Figure 1: The ZFC3 protein involves two principal domains and localizes to mitochondria. a Domain structures of the ZFC3 protein in M. oryzae and the conservative and evolutionary analysis of the ZFC3 like protein in representative fungi. b Expression and localization of ZFC3-RFP protein in M. oryzae. Vegetative hyphae expressing the ZFC3-RFP fusion protein was examined under microscope. Mito-Tracker green (green fluorescent dye as a membrane marker). Scale bar = 2 mm