From its tropical origin in southwestern Mexico, maize spread over a wide latitudinal cline in the Americas.

Cheng Huang, Huayue Sun, Dingyi Xu, Qiuyue Chen, Yameng Liang, Xufeng Wang, Guanghui Xu, Jinge Tian, Chenglong Wang, Dan Li, Lishuan Wu, Xiaohong Yang, Weiwei Jin, John F. Doebley, and Feng Tian

PNAS January 9 2018; vol.115; no.2: E334–E341

 

Significance

 

Flowering time is a critical determinant of crop adaptation to local environments. As a result of natural and artificial selection, maize has evolved a reduced photoperiod sensitivity to adapt to regions over 90° of latitude in the Americas. Here we show that a distant Harbinger-like transposon acts as a cis-regulatory element to repress ZmCCT9 expression to promote flowering under the long days of higher latitudes. The transposon at ZmCCT9 and another functional transposon at a second flowering-time gene, ZmCCT10, arose sequentially following domestication and were targeted by selection as maize spread from the tropics to higher latitudes. Our results demonstrate that new functional variation created by transposon insertions helped maize to spread over a broad range of latitudes rapidly.

 

 Abstract

 

From its tropical origin in southwestern Mexico, maize spread over a wide latitudinal cline in the Americas. This feat defies the rule that crops are inhibited from spreading easily across latitudes. How the widespread latitudinal adaptation of maize was accomplished is largely unknown. Through positional cloning and association mapping, we resolved a flowering-time quantitative trait locus to a Harbinger-like transposable element positioned 57 kb upstream of a CCT transcription factor (ZmCCT9). The Harbinger-like element acts in cis to repress ZmCCT9 expression to promote flowering under long days. Knockout of ZmCCT9 by CRISPR/Cas9 causes early flowering under long days. ZmCCT9 is diurnally regulated and negatively regulates the expression of the florigen ZCN8, thereby resulting in late flowering under long days. Population genetics analyses revealed that the Harbinger-like transposon insertion at ZmCCT9 and the CACTA-like transposon insertion at another CCT paralog, ZmCCT10, arose sequentially following domestication and were targeted by selection for maize adaptation to higher latitudes. Our findings help explain how the dynamic maize genome with abundant transposon activity enabled maize to adapt over 90° of latitude during the pre-Columbian era.

 

See: http://www.pnas.org/content/115/2/E334.full